Minimum cycle bases of product graphs

نویسندگان

  • Wilfried Imrich
  • Peter F. Stadler
چکیده

A construction for a minimal cycle basis for the Cartesian and the strong product of two graphs from the minimal length cycle bases of the factors is presented. Furthermore, we derive asymptotic expressions for the average length of the cycles in the minimal cycle bases of the powers (iterated products) of graphs. In the limit only triangles and squares play a role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum cycle bases of lexicographic products

Minimum cycle bases of product graphs can in most situations be constructed from minimum cycle bases of the factors together with a suitable collection of triangles and/or quadrangles determined by the product operation. Here we give an explicit construction for the lexicographic product G ◦ H that generalizes results by Berger and Jaradat to the case that H is not connected.

متن کامل

Minimal cycle bases of the lexigraphic product of graphs

A construction of minimum cycle bases of the lexicographic product of graphs is presented. Moreover, the length of a longest cycle of a minimal cycle basis is determined.

متن کامل

On the basic number and the minimum cycle bases of the wreath product of some graphs I

A construction of a minimum cycle bases for the wreath product of some classes of graphs is presented. Moreover, the basis numbers for the wreath product of the same classes are determined.

متن کامل

Minimum cycle bases of direct products of complete graphs

This paper presents a construction of a minimum cycle basis for the direct product of two complete graphs on three or more vertices. With the exception of two special cases, such bases consist entirely of triangles. © 2007 Elsevier B.V. All rights reserved.

متن کامل

Minimum cycle bases for direct products of K2 with complete graphs

We construct a minimum cycle basis for the direct product K2 × Kp of two complete graphs where p ≥ 2. For p > 3, these bases consists only of squares. This completes the work of R. Hammack, who treated the case Kp ×Kq for p, q ≥ 3 [Inform. Process. Lett. 102 (2007), 214–218.]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2002